23 research outputs found

    Emotion classification using advanced machine learning techniques applied to wearable physiological signals data

    No full text
    This research contributed to the development of advanced feature selection model, hyperparameter optimization and temporal multimodal deep learning model to improve the performance of dimensional emotion recognition. This study adopts different approaches based on portable wearable physiological sensors. It identified best models for feature selection and best hyperparameter values for Long Short-Term Memory network and how to fuse multi-modal sensors efficiently for assessing emotion recognition. All methods of this thesis collectively deliver better algorithms and maximize the use of miniaturized sensors to provide an accurate measurement of emotion recognition

    A hybrid of modified PSO and local search on a multi-robot search system

    Get PDF
    Particle swarm optimization (PSO), a new population based algorithm, has recently been used on multi-robot systems. Although this algorithm is applied to solve many optimization problems as well as multi-robot systems, it has some drawbacks when it is applied on multi-robot search systems to find a target in a search space containing big static obstacles. One of these defects is premature convergence. This means that one of the properties of basic PSO is that when particles are spread in a search space, as time increases they tend to converge in a small area. This shortcoming is also evident on a multi-robot search system, particularly when there are big static obstacles in the search space that prevent the robots from finding the target easily; therefore, as time increases, based on this property they converge to a small area that may not contain the target and become entrapped in that area.Another shortcoming is that basic PSO cannot guarantee the global convergence of the algorithm. In other words, initially particles explore different areas, but in some cases they are not good at exploiting promising areas, which will increase the search time.This study proposes a method based on the particle swarm optimization (PSO) technique on a multi-robot system to find a target in a search space containing big static obstacles. This method is not only able to overcome the premature convergence problem but also establishes an efficient balance between exploration and exploitation and guarantees global convergence, reducing the search time by combining with a local search method, such as A-star.To validate the effectiveness and usefulness of algorithms,a simulation environment has been developed for conducting simulation-based experiments in different scenarios and for reporting experimental results. These experimental results have demonstrated that the proposed method is able to overcome the premature convergence problem and guarantee global convergence

    A survey: Particle Swarm Optimization based algorithms to solve premature convergence problem

    No full text
    Particle Swarm Optimization (PSO) is a biologically inspired computational search and optimization method based on the social behaviors of birds flocking or fish schooling. Although, PSO is represented in solving many well-known numerical test problems, but it suffers from the premature convergence. A number of basic variations have been developed due to solve the premature convergence problem and improve quality of solution founded by the PSO. This study presents a comprehensive survey of the various PSO-based algorithms. As part of this survey, the authors have included a classification of the approaches and they have identify the main features of each proposal. In the last part of the study, some of the topics within this field that are considered as promising areas of future research are listed

    A survey: Particle Swarm Optimization based algorithms to solve premature convergence problem

    Get PDF
    Particle Swarm Optimization (PSO) is a biologically inspired computational search and optimization method based on the social behaviors of birds flocking or fish schooling. Although, PSO is represented in solving many well-known numerical test problems, but it suffers from the premature convergence. A number of basic variations have been developed due to solve the premature convergence problem and improve quality of solution founded by the PSO. This study presents a comprehensive survey of the various PSO-based algorithms. As part of this survey, the authors have included a classification of the approaches and they have identify the main features of each proposal. In the last part of the study, some of the topics within this field that are considered as promising areas of future research are listed

    Balancing exploration and exploitation in particle swarm optimization on search tasking

    No full text
    In this study we present a combinatorial optimization method based on particle swarm optimization and local search algorithm on the multi-robot search system. Under this method, in order to create a balance between exploration and exploitation and guarantee the global convergence, at each iteration step if the distance between target and the robot become less than specific measure then a local search algorithm is performed. The local search encourages the particle to explore the local region beyond to reach the target in lesser search time. Experimental results obtained in a simulated environment show that biological and sociological inspiration could be useful to meet the challenges of robotic applications that can be described as optimization problems

    Audio based depression detection using Convolutional Autoencoder

    No full text
    Depression is a serious and common psychological disorder that requires early diagnosis and treatment. In severe episodes the condition may result in suicidal thoughts. Recently, the need for building an effective audio-based Automatic Depression Detection (ADD) system has sparked the interest of the research community. To date, most of the reported approaches to recognize depression rely on hand-crafted feature extraction for audio data representation. They combine wide variety of audio-related features to improve the classification performance. However, combining many hand-crafted features including relevant and less-relevant can enlarge the feature space which can lead to high-dimensionality issues as not all the features would carry significant information regarding depression. Having high number of features can make the pattern recognition more difficult and increase the risk of overfitting. To overcome these limitations, an audio-based framework of depression detection which includes an adaptation of a deep learning (DL) technique is proposed to automatically extract the highly relevant and compact feature set. This proposed framework uses an end-to-end Convolutional Neural Network-based Autoencoder (CNN AE) technique to learn the highly relevant and discriminative features from raw sequential audio data, and hence to detect depressed people more accurately. In addition, to address the sample imbalance problem we use a cluster-based sampling technique which highly reduces the risk of bias towards the major class (non-depressed). To evaluate the performance and effectiveness of the proposed pipeline, we perform the experiments on Distress Analysis Interview Corpus-Wizard of Oz (DAIC-WOZ) dataset and compare them with the hand-crafted feature extraction methods and other outstanding studies in this domain. The results show that proposed method outperforms other well-known audio-based ADD models with at least 7% improvement in F-measure for classifying depression.</p

    Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors

    No full text
    There is currently no standard or widely accepted subset of features to effectively classify different emotions based on electroencephalogram (EEG) signals. While combining all possible EEG features may improve the classification performance, it can lead to high dimensionality and worse performance due to redundancy and inefficiency. To solve the high-dimensionality problem, this paper proposes a new framework to automatically search for the optimal subset of EEG features using evolutionary computation (EC) algorithms. The proposed framework has been extensively evaluated using two public datasets (MAHNOB, DEAP) and a new dataset acquired with a mobile EEG sensor. The results confirm that EC algorithms can effectively support feature selection to identify the best EEG features and the best channels to maximize performance over a four-quadrant emotion classification problem. These findings are significant for informing future development of EEG-based emotion classification because low-cost mobile EEG sensors with fewer electrodes are becoming popular for many new applications

    Automatic driver stress level classification using multimodal deep learning

    No full text
    Stress has been identified as one of the contributing factors to vehicle crashes which create a significant cost in terms of loss of life and productivity for governments and societies. Motivated by the need to address the significant costs of driver stress, it is essential to build a practical system that can detect drivers’ stress levels in real time with high accuracy. A driver stress detection model often requires data from different modalities, including ECG signals, vehicle data (e.g. steering wheel, brake pedal) and contextual data (e.g. weather conditions and other ambient factors). Most of the current works use traditional machine learning techniques to fuse multimodal data at different levels (e.g. feature level) to classify drivers’ stress levels. Although traditional multimodal fusion models are beneficial for driver stress detection, they inherently have some critical limitations (e.g. ignore non-linear correlation across modalities) that may hinder the development of a reliable and accurate model. To overcome the limitations of traditional multimodal fusion, this paper proposes a framework based on adopting deep learning techniques for driver stress classification captured by multimodal data. Specifically, we propose a multimodal fusion model based on convolutional neural networks (CNN) and long short-term memory (LSTM) to fuse the ECG, vehicle data and contextual data to jointly learn the highly correlated representation across modalities, after learning each modality, with a single deep network. To validate the effectiveness of the proposed model, we perform experiments on our dataset collected using an advanced driving simulator. In this paper, we present a multi-modal system based on the adoption of deep learning techniques to improve the performance of driver stress classification. The results show that the proposed model outperforms model built using the traditional machine learning techniques based on handcrafted features (average accuracy: 92.8%, sensitivity: 94.13%, specificity: 97.37% and precision: 95.00%)
    corecore